Main Content

Modular Autonomous Quadruped Robot Project(Open Source)

DESCRIPTION
- Designed with Fusion 360®
- Coded in Arduino language on Teensy 3.5 & Arduino
- Modular structure (Lidar, Drone, Gas detection)
- Autonomous features
(Avoiding obstacle, maintain balance, pressure control)
- PI (Proportion - Integral) control
- Inverse Kinematics & Kinematics formulas applied
- Sense Capacity: Lidar, Gas detection, Pressure sensors
Gyroscope, GPS, Wi-Fi connection, Camera

Animal-inspired drones and robots have now been observed accomplishing a wide variety of tasks, including surveillance, predictive maintenance in industrial settings, and as mobile payload transportation system for when a situation becomes too dangerous for a human. But unlike the current robots, I wanted to make a quadruped robot dog that was comprised entirely of replaceable modules rather than a monolithic system. This modular approach allows for the robot to be adapted in many more ways than a traditional one, and as new modules are introduced, the platform’s capabilities can be greatly enhanced.

This Project which is called “LOTP” (stands for “Line On The Paper”) and it has been awarded the 1. Prize of TUBITAK Regional Science and Technology Competition, awarded the 3. Prize of TUBITAK National Science and Technology Competition in Robotics & Coding branch and awarded the 1. Prize INSPO 2021 International Science Projects Olympiad in Engineering.

In the robot’s current form, the platform is made up of six distinct units in a default configuration. At the core there is a computer unit which is responsible for gathering inputs, performing calculations, and outputting motions. A Teensy 3.5 was selected due to its fast speed and large amounts of RAM/flash storage. Additionally, the unit contains a Wi-Fi module, a GPS module, and a gyroscope for orientation data. Main battery unit and backup battery unit provide power to the robot with their pair of LiPo battery packs, and a regulator unit reduces the voltage to 6V for the servos and 3.3v/5v for the electronics. Finally, pressure sensors positioned at the legs to adjust body under pressure and while the camera module transfers live video stream to the screen on remote controller.”

Link to article