Main Content

Laser device for neutralizing - mosquitoes

Low-cost device for control mosquitoes, weeds, pest etc.

This is an innovative and effective method for remote monitoring of mosquitoes and their neutralization. Was explained in detail how was leveraged modern advances in neural networks to use a powerful laser to neutralize mosquitoes. The experimental low-cost prototype for mosquito control uses a powerful laser to thermally neutralize the mosquitoes. The developed device is controlled by a single-board computer based on the neural network and demonstrated experimental research for mosquito neutralization during which, to maximize approximation to natural conditions, simulation of various working conditions was conducted. We showed that a low-cost device can be used to kill mosquitoes with a powerful laser.

To detect x,y coordinates initially we used Haar cascades in RaspberryPI after that yolov4-tiny in Jetson nano. For Y coordinates - stereo vision.
Calculation of necessary value for the angle of mirrors.
RaspberryPI/JetsonNano by SPI sends a command for galvanometer via DAC mcp4922. Electrical scheme (here). From mcp4922 bipolar analog signal go-to amplifier. Finally, we have -12 and + 12 V for the control positions of the mirrors.

Single board computer to processes the digital signal from the camera and determines the positioning of the object, and transmits the digital signal to the analog display - 3, where digital-to-analog converts the signal to the range of 0-5V. Using a board with an operational amplifier, we get a bipolar voltage, from which the boards with the motor driver for the galvanometer are powered - 4, from where the signal goes to galvanometers -7. The galvanometer uses mirrors to change the direction of the laser - 6. The system is powered by the power supply - 5. Cameras 2 determine the distance to the object. The camera detects mosquitoes and transmits data to the galvanometer, which sets the mirrors in the correct position, and then the laser turns on.

Don’t use the power laser!
The main limiting factor in the development of this technology is the danger of the laser may damage the eyes. The laser can enter a blood vessel and clog it, it can get into a blind spot where nerves from all over the eye go to the brain, you can burn out a line of “pixels” And then the damaged retina can begin to flake off, and this is the path to complete and irreversible loss of vision. This is dangerous because a person may not notice at the beginning of damage from a laser hit: there are no pain receptors there, the brain completes objects in damaged areas (remapping of dead pixels), and only when the damaged area becomes large enough person starts to notice that some objects not visible.
We can develop additional security systems, such as human detection, audio sensors, etc. But in any case, we are not able to make the installation 100% safe, since even a laser can be reflected and damage the eye of a person who is not in the field of view of the device and at a distant distance. Therefore, this technology should not be used at home.
My strong recommendation - don’t use the power laser! I recommend making a device that will track an object using a safe laser pointer.”

Link to article