Main Content

Personal healthcare wearable which can monitor and detect anomaly in vitals

As technology is transitioning in a swift manner, there are many inventions made to make our lives better. High tech health care system is now a touch away. Telemedicine is one of the major implementations where one can talk to their doctor via video call etc, and tell their symptoms to get the solution.

Wearable health monitoring technologies, including smartwatches and fitness trackers, have attracted considerable consumer interest over the past few years. Not only has this interest has been mainly encouraged by the rapid demand growth in the wearable technology market for the ubiquitous, continuous, and pervasive monitoring of vital signs, but it has been leveraged by the state-of-the-art technological developments in sensor technology and wireless communications. The wearable technology market was valued at over $13.2 billion by the end of 2016 and its value is forecast to reach $34 billion by the end of 2020.

There are many sensors for measuring vitals of the human body which are essential for a doctor or a medic to know the health problems. We all know that doctor first checks Heart Rate to know Heart Rate Variability (HRV) and body temperature. But the current wearable bands and devices fail in the accuracy and repeatability of the measured data. This mostly happens due to miss alignment of fitness tracker and erroneous reading etc. Most use the LED and Photodiode based Photo Plethysmography (PPG) sensors for the heart rate measurement.

But there are very fewer devices explicitly focusing on women health problems such as menopause and it’s symptoms. So in this project, I would like to measure the vitals of human body i.e Heart rate and Body temperature and its variation over time. This device has the following features,

Battery-powered wearable
Measures real-time heart rate and inter-beat Interval (IBI)
Measures real-time body temperature
Plots real-time graph on the display
Sends data over Bluetooth to mobile phone
Data can be recorded and sent to the doctor directly for further analysis.
Helps in overcoming and tackling menopause symptoms such as hot flashes etc.
Good battery management with included sleep.
Currently, modern wearable devices are no longer only focused on simple fitness tracking measurements such as the number of steps taken in a day, they also monitor important physiological considerations, such as Heart Rate Variability (HRV), glucose measures, blood pressure readings, and much additional health-related information. Among the numerous vital signs measured, the heart rate (HR) calculation has been one of the most valuable parameters. For many years, file Electrocardiogram (ECG) has been used as a dominant cardiac monitoring technique to identify cardiovascular abnormalities and to detect irregularities in heart rhythms. The ECG is a recording of the electrical activity of the heart. It shows the variations in the amplitude of the ECG signal versus time. This recorded electrical activity originates from the depolarization of the conductive pathway of the heart and the cardiac muscle tissues during each cardiac cycle. Even though traditional cardiac monitoring technologies using the ECG signals has undergone continuous improvements for decades to address the ever-changing requirements of their users, specifically in terms of measurement accuracy.

these techniques, up to now, have not been enhanced to the point of offering the user flexibility, portability, and convenience. For instance, for the ECG to operate effectively, several bioelectrodes must be placed at certain body locations; this procedure greatly limits the moving flexibility and mobility of the users. In addition, PPG has shown itself to be an alternative HR monitoring technique. By using detailed signal analysis, the PPG signal offers excellent potential to replace ECG recordings for the extraction of HRV signals, especially in monitoring healthy individuals. Therefore, to overcome the ECG limitations, an alternative solution based on PPG technology can be used.”

Link to article