Main Content

In the modern age, being able to interface efficiently with a computer is necessary in order to complete many everyday tasks. For individuals lacking manual dexterity, the task of using standard computer peripherals can prove to be nearly impossible. As technology becomes more integrated into different aspects of our society, being able to effectively use the internet is no longer just a matter of luxury or convenience but is instead closer to a basic right as a human being. Developing technology that can enable individuals to access the internet not only makes them more independent but can also aid in the advancement of our society.

With a vast majority of modern jobs requiring workers to possess basic computer skills, there exists a market to produce assistive technology for individuals who are unable to effectively utilize conventional peripheral devices. Several current products fulfill this need, yet are often costly, restrictive, and undoubtedly have room for improvement. One of the oldest input mechanisms developed for individuals with quadriplegia, or ALS, is the “Sip-and-puff” device which was originally used to control a typewriter by allowing the user to sip or blow into a small tube.[1] First prototyped by Reg Maling in 1960, it was the beginning of a long line of similar devices, some of which are still in use today. Other, simpler solutions involve passive pointing devices that are held within the mouth or mounted to the head that can be used to type characters on a keyboard, commonly referred to as a “mouth stick” or a “head pointer”. Although these tools are rudimentary, they remain to be some of the most popular assistive devices due to their simplicity and low price. However, even with practice these tools cannot offer the high levels of productivity that is required in many jobs. [2] Modern technologies such as gaze interaction and eye-tracking software can provide greater efficiency when it comes to accomplishing tasks on a PC, but as a consequence the price is dramatically increased. This presents an even greater issue when considering the lifetime costs of living with such a condition can easily exceed 1.35 million dollars. [3]

All of these existing tools grant their user greater capability, yet each device brings along with its various negative side effects. Examples of such effects for a toggle and sip-and-puff device might be restrictive equipment fixed around the users’ head or mouth that is required for a fixed toggle to function; the fact that the user’s posture has to conform to the device, causing fatigue in extended use; or the inability to talk while the device is operated. Alongside the costs, eye tracking equipment requires lots of calibration to be used effectively and avoiding subconscious eye movement requires constant focus from the user. This project aims to provide a cheaper solution that allows for greater comfort and can unlock a wider range of uses for the user.

In a broad sense, the ATOM is a computer mouse that could be used by someone living with a major spinal cord injury or ALS, who has little to capability of fine motor control on their extremities. The design we decided upon involves a plastic retainer that fits to the users maxillary teeth and holds several electronic components that can be interacted with using the teeth and jaw muscles. The retainer is connected via a thin tether to a base that houses the microcontroller and acts as a hands-free docking station for the retainer when not in use.

In order to control the computer mouse, the user gently lifts their tongue onto the downward-facing joystick and pushes in the direction they desire. Pushing your tongue out causes the cursor to move up vertically, and retracting your tongue back towards the throat moves the cursor down. Left and right movements control the cursor accordingly. In order to right or left click, the user can bite down lightly isolating pressure to one side of the mouth or the other to actuate the button switches. A flat cable made from 10 individual wires carries the signals from the retainer to the base, which is plugged into any computer via standard USB Type-A.”

Link to article