Main Content

LoRa Controlled Garage Door

This project replaces the WiFi Garage Door control base on an ESP2866 with a radio/LoRa version for greater range and includes a push button long range radio/LoRa remote for use from the car.

Originally this project attempted to use an Adafruit Feather M0 LoRa board, however that board locked up repeatedly when mains powered. After trying a number of fixes, it was replaced with a Teensy 3.2 + Adafruit Teensy Adaptor + Adafruit Radio Feather Wing. The Teensy combination has proved to be completely reliable.

The Adafruit Radio Feather Wing is an LoRa version but this project does not use the LoRa infrastructure. Instead a simple point-to-point connection, protected by 128 bit security, is used. This avoids the LoRa registration process and the complexity of an LoRa gateway. Because the LoRa infrastructure is not used, it is also possible to replace the LoRa based board with a normal radio based board.

An accelerometer is used to measure the position of the tilt-a-door. There is also provision for, optional, limit switches.

There are two parts to this project. The first one uses a WiFi, BLE or Bluetooth bridge to allow an Android mobile running pfodApp to connect to the Teensy 3.2 + Adafruit Teensy Adaptor + Adafruit Radio Feather Wing boards controlling the garage door. The second part of the project is an in-car push button remote control via point-to-point radio/LoRa.

When connecting to an Android mobile running pfodApp, pfod’s drawing primitives are used to display three push buttons, the position of the door and its state.

When using the in-car remote control, the code in the remote sends either Open or Close cmds, depending on which button is pushed, and then monitors the updated from the Garage Door controller to confirm the door has reached it limit. An indicator led on the remote goes solid when the operation is complete.

Note about Adafruit Feather M0 LoRa Board stability
The Adafruit Feather M0 LoRa Board appears to be prone to locking up on power line spikes. Running on purely battery seems to be reliable, but even then it can lock up as the battery is being connected. The reset push button on the board does not clear the lock up. A momentary NO (normally Open) push button between EN and GND can be used to clear the lock up. But that is not convenient when you are 200m away sitting in the car in poring rain and the door is not opening. Replacing the Adafruit M0 LoRa board with a Teensy 3.2 + Adafruit Teensy Adaptor + Adafruit Radio Feather Wing solved all the problems.

Supplies:
Parts List:

1 x Teensy 3.2
1 x Adafruit Radio Feather Wing (LoRa)
1 x Solid State Relay KQAG616D (Jaycar SY4090 or similiar)
1 x Sparkfun Accelerometer breakout board - ADXL335
1 x vero board for mounting solid state relay
1 x plastic case, nuts/bolts, hookup wire and cable
1 x push button (for local operation)”

Link to article