Main Content

GPS-based location tracking is one of the very important services nowadays. We use this to find a path to our destination and also track the position of our goods using this. But have you ever heard of location tracking without using GPS? Today we are going to discuss the idea of making a location tracker using BLE and LoRa Technology. We are not going to make one today but we will discuss how it would work. But before that, we are going to discuss what’s inside the modules that can make this application possible. We have the LBT01 LoRa based GPS tracker and BLE Beacons from LoRa. We will tear them out and after that, we will check what’s inside them that makes all the applications possible.

So let’s get to the fun part now.

Before we get to the tearing and studying of the BLE Beacons that we have. We need to understand what BLE is and how it works. BLE stands for Bluetooth Low Energy. It is a wireless personal area network technology designed and marketed by the Bluetooth Special Interest Group (Bluetooth SIG) aimed at novel applications in the healthcare, fitness, beacons, security, and home entertainment industries, etc. Compared to Classic Bluetooth, Bluetooth Low Energy is intended to provide considerably reduced power consumption and cost while maintaining a similar communication range. Bluetooth Low Energy technology operates in the same spectrum range (the 2.400–2.4835 GHz ISM band) as classic Bluetooth technology but uses a different set of channels. Instead of the classic Bluetooth seventy-nine 1-MHz channels, Bluetooth Low Energy has forty 2-MHz channels. Within a channel, data is transmitted using Gaussian frequency shift modulation, similar to classic Bluetooth’s Basic Rate scheme. The bit rate is 1 Mbit/s (with an option of 2 Mbit/s in Bluetooth 5), and the maximum transmit power is 10 mW (100 mW in Bluetooth 5). Bluetooth Low Energy uses frequency hopping to counteract narrowband interference problems. Classic Bluetooth also uses frequency hopping but the details are different; as a result, while both FCC and ETSI classify Bluetooth technology as an FHSS scheme, Bluetooth Low Energy is classified as a system using digital modulation techniques or a direct-sequence spread spectrum.

LoRa technology is also used here but we are not going to discuss that today. If you want to know more about LoRa you can get that from here.”

Link to article