Using Deep Learning to Create Professional-Level Photographs

Machine learning (ML) excels in many areas with well defined goals. Tasks where there exists a right or wrong answer help with the training process and allow the algorithm to achieve its desired goal, whether it be correctly identifying objects in images or providing a suitable translation from one language to another. However, there are areas where objective evaluations are not available. For example, whether a photograph is beautiful is measured by its aesthetic value, which is a highly subjective concept. To explore how ML can learn subjective concepts, we introduce an experimental deep-learning system for artistic content creation. It mimics the workflow of a professional photographer, roaming landscape panoramas from Google Street View and searching for the best composition, then carrying out various postprocessing operations to create an aesthetically pleasing image. Our virtual photographer “travelled” ~40,000 panoramas in areas like the Alps, Banff and Jasper National Parks in Canada, Big Sur in California and Yellowstone National Park, and returned with creations that are quite impressive, some even approaching professional quality — as judged by professional photographers.”