“Most batteries are composed of two solid, electrochemically active layers called electrodes, separated by a polymer membrane infused with a liquid or gel electrolyte. But recent research has explored the possibility of all-solid-state batteries, in which the liquid (and potentially flammable) electrolyte would be replaced by a solid electrolyte, which could enhance the batteries’ energy density and safety. Now, for the first time, a team at MIT has probed the mechanical properties of a sulfide-based solid electrolyte material, to determine its mechanical performance when incorporated into batteries.”
Related Content
Related Posts:
- Cobalt-free batteries could power cars of the future
- Researchers 3D print components for a portable mass spectrometer
- A blueprint for making quantum computers easier to program
- MIT researchers discover “neutronic molecules”
- MIT scientists tune the entanglement structure in an array of qubits
- New software enables blind and low-vision users to create interactive, accessible charts
- Researchers 3D print key components for a point-of-care mass spectrometer
- Self-powered sensor automatically harvests magnetic energy
- This 3D printer can figure out how to print with an unknown material
- With inspiration from “Tetris,” MIT researchers develop a better radiation detector