“The new nylon-based system, by contrast, uses cheap material and a simple manufacturing process, and demonstrates very good cycling longevity. It all comes down to how the nylon fibers are shaped. Some polymer fiber materials, including highly oriented nylon, have an unusual property: When heated, “they shrink in length but expand in diameter,” Mirvakili says, and this property has been harnessed to make some linear actuator devices. But to turn that linear shrinking motion into bending typically requires a mechanism such as a pulley and a takeup reel, adding extra size, complexity, and expense. The MIT team ‘s advance was to directly harness the motion without requiring extra mechanical parts.”
Related Content
Related Posts:
- Cobalt-free batteries could power cars of the future
- Researchers 3D print components for a portable mass spectrometer
- A blueprint for making quantum computers easier to program
- MIT researchers discover “neutronic molecules”
- MIT scientists tune the entanglement structure in an array of qubits
- New software enables blind and low-vision users to create interactive, accessible charts
- Researchers 3D print key components for a point-of-care mass spectrometer
- Self-powered sensor automatically harvests magnetic energy
- This 3D printer can figure out how to print with an unknown material
- With inspiration from “Tetris,” MIT researchers develop a better radiation detector