# Content for Fractal In mathematics, a fractal is a subset of a Euclidean space for which the fractal dimension strictly exceeds the topological dimension. Fractals appear the same at different levels, as illustrated in successive magnifications of the Mandelbrot set; because of this, fractals are encountered ubiquitously in nature. Fractals exhibit similar patterns at increasingly small scales called self similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, it is called affine self-similar. Fractal geometry lies within the mathematical branch of topology. One way that fractals are different from finite geometric figures is the way in which they scale. Doubling the edge lengths of a polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the dimension of the space the polygon resides in). Likewise, if the radius of a sphere is doubled, its volume scales by eight, which is two (the ratio of the new to the old radius) to the power of three (the dimension that the sphere resides in). However, if a fractal's one-dimensional lengths are all doubled, the spatial content of the fractal scales by a power that is not necessarily an integer. This power is called the fractal dimension of the fractal, and it usually exceeds the fractal's topological dimension.

## ProjectFPGA-Fractals 1920x1080x60 Real-Time on USB Power2020-01-23 “FPGA-based real-time fractal generation. Fully pipelined, dynamic resource allocation, up to 18000 MMUL/s. Float matrix math on J1B CPU. Fractal generation is a popular FPGA design exercise. For example, Stanford university used it as lab assignment already in …