Content for ACS.Edu

ACS.Edu

The American Chemical Society (ACS) is a scientific society based in the United States that supports scientific inquiry in the field of chemistry. Founded in 1876 at New York University, the ACS currently has nearly 157,000 members at all degree levels and in all fields of chemistry, chemical engineering, and related fields. It is the world's largest scientific society by membership. The ACS is a 501(c)(3) non-profit organization and holds a congressional charter under Title 36 of the United States Code. Its headquarters are located in Washington, D.C., and it has a large concentration of staff in Columbus, Ohio. The ACS is a leading source of scientific information through its peer-reviewed scientific journals, national conferences, and the Chemical Abstracts Service. Its publications division produces over 60 scholarly journals including the prestigious Journal of the American Chemical Society, as well as the weekly trade magazine Chemical & Engineering News. The ACS holds national meetings twice a year covering the complete field of chemistry and also holds smaller conferences concentrating on specific chemical fields or geographic regions. The primary source of income of the ACS is the Chemical Abstracts Service, a provider of chemical databases worldwide.

A sensor that might someday enable ‘mind-controlled’ robots

“It sounds like something from science fiction: Don a specialized, electronic headband and control a robot using your mind. But now, recent research published in ACS Applied Nano Materials has taken a step toward making this a reality. By designing …

Tiny, caterpillar-like soft robot folds, rolls, grabs and degrades

“When you hear the term “robot,” you might think of complicated machinery working in factories or roving on other planets. But “millirobots” might change that. They’re robots about as wide as a finger that someday could deliver drugs or …

Your next wooden chair could arrive flat, then dry into a 3D shape

“Wooden objects are usually made by sawing, carving, bending or pressing. That’s so old school! Today, scientists will describe how flat wooden shapes extruded by a 3D printer can be programmed to self-morph into complex 3D shapes. In the …

Lithium-ion batteries that last longer in extreme cold

“When temperatures fall below freezing, cellphones need to be recharged frequently, and electric cars have shorter driving ranges. This is because their lithium-ion batteries’ anodes get sluggish, holding less charge and draining energy quickly. To improve electrical performance in the …

A candlelight-like glow from a flexible organic LED

“Giving off a comfortable glow, candles set the ambiance for a special dinner or just a quiet evening at home. However, some lighting alternatives, such as electronic candles, give off unwanted blue wavelengths that interfere with the body’s circadian …

Camels’ noses inspire a new humidity sensor

“Camels have a renowned ability to survive on little water. They are also adept at finding something to drink in the vast desert, using noses that are exquisite moisture detectors. In a new study in ACS Nano, researchers describe a …

High-energy shape memory polymer could someday help robots flex their muscles

“When stretched or deformed, shape memory polymers return to their original shapes after heat or light is applied. These materials show great promise for soft robotics, smart biomedical devices and deployable space structures, but until now they haven’t been …

Stretching the capacity of flexible energy storage

“Some electronics can bend, twist and stretch in wearable displays, biomedical applications and soft robots. While these devices’ circuits have become increasingly pliable, the batteries and supercapacitors that power them are still rigid. Now, researchers in ACS’ Nano Letters report …

Magnetically propelled cilia power climbing soft robots and microfluidic pumps

“The rhythmic motions of hair-like cilia move liquids around cells or propel the cells themselves. In nature, cilia flap independently, and mimicking these movements with artificial materials requires complex mechanisms. Now, researchers reporting in ACS Applied Materials & Interfaces have made …

An uncrackable combination of invisible ink and artificial intelligence

“Coded messages in invisible ink sound like something only found in espionage books, but in real life, they can have important security purposes. Yet, they can be cracked if their encryption is predictable. Now, researchers reporting in ACS Applied Materials …