Main Content

Tiny terahertz laser could be used for imaging, chemical detection

Terahertz radiation — the band of the electromagnetic spectrum between microwaves and visible light — has promising applications in medical and industrial imaging and chemical detection, among other uses. But many of those applications depend on small, power-efficient sources of terahertz rays, and the standard method for producing them involves a bulky, power-hungry, tabletop device. For more than 20 years, Qing Hu, a distinguished professor of electrical engineering and computer science at MIT, and his group have been working on sources of terahertz radiation that can be etched onto microchips. In the latest issue of Nature Photonics, members of Hu’s group and colleagues at Sandia National Laboratories and the University of Toronto describe a novel design that boosts the power output of chip-mounted terahertz lasers by 80 percent. As the best-performing chip-mounted terahertz source yet reported, the researchers’ device has been selected by NASA to provide terahertz emission for its Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) mission. The mission is intended to determine the composition of the interstellar medium, or the matter that fills the space between stars, and it’s using terahertz rays because they’re uniquely well-suited to spectroscopic measurement of oxygen concentrations. Because the mission will deploy instrument-laden balloons to the Earth’s upper atmosphere, the terahertz emitter needs to be lightweight. The researchers’ design is a new variation on a device called a quantum cascade laser with distributed feedback. “We started with this because it was the best out there,” says Ali Khalatpour, a graduate student in electrical engineering and computer science and first author on the paper. “It has the optimum performance for terahertz.” Until now, however, the device has had a major drawback, which is that it naturally emits radiation in two opposed directions. Since most applications of terahertz radiation require directed light, that means that the device squanders half of its energy output. Khalatpour and his colleagues found a way to redirect 80 percent of the light that usually exits the back of the laser, so that it travels in the desired direction. As Khalatpour explains, the researchers’ design is not tied to any particular “gain medium,” or combination of materials in the body of the laser. “If we come up with a better gain medium, we can double its output power, too,” Khalatpour says. “We increased power without designing a new active medium, which is pretty hard. Usually, even a 10 percent increase requires a lot of work in every aspect of the design.””

Link to article