“For more than 50 years, silicon chipmakers have devised inventive ways to switch electricity on and off, generating the digital ones and zeroes that encode words, pictures, movies and other forms of data. But as researchers think about electronics for the next 50 years, they’ve begun to look beyond silicon to new types of materials that occur in single layers only three atoms thick – far thinner than modern silicon chips – yet are able to control electricity more efficiently to create those digital ones and zeroes. Now a team led by Stanford electrical engineering Associate Professor Eric Pop has demonstrated how it might be possible to mass-produce such atomically thin materials and electronics. Why would this be useful? Because such thin materials would be transparent and flexible as well, in ways that would enable electronic devices that wouldn’t be possible to make with silicon.”
Related Content
Related Posts:
- Exploring the ultrasmall and ultrafast through advances in attosecond science
- A replacement for traditional motors could enhance next-gen robots
- New high-speed microscale 3D printing technique
- Researchers show an old law still holds for quirky quantum materials
- Groundbreaking study shows defects spreading through diamond faster than the speed of sound
- ‘Computer vision’ reveals unprecedented physical and chemical details of how a lithium-ion battery works
- Unlocking the mysteries of freezing in supercooled water droplets
- A molecular additive enhances next-gen LEDs – but shortens their lifespans
- Researchers show how to increase X-ray laser brightness and power using a crystal cavity and diamond mirrors
- New nontoxic powder uses sunlight to quickly disinfect contaminated drinking water