“Every undergraduate computer-science major takes a course on data structures, which describes different ways of organizing data in a computer’s memory. Every data structure has its own advantages: Some are good for fast retrieval, some for efficient search, some for quick insertions and deletions, and so on. Today, hardware manufacturers are making computer chips faster by giving them more cores, or processing units. But while some data structures are well adapted to multicore computing, others are not. In principle, doubling the number of cores should double the efficiency of a computation. With algorithms that use a common data structure called a priority queue, that’s been true for up to about eight cores — but adding any more cores actually causes performance to plummet.”
Related Content
Related Posts:
- Cobalt-free batteries could power cars of the future
- Researchers 3D print components for a portable mass spectrometer
- A blueprint for making quantum computers easier to program
- MIT researchers discover “neutronic molecules”
- MIT scientists tune the entanglement structure in an array of qubits
- New software enables blind and low-vision users to create interactive, accessible charts
- Researchers 3D print key components for a point-of-care mass spectrometer
- Self-powered sensor automatically harvests magnetic energy
- This 3D printer can figure out how to print with an unknown material
- With inspiration from “Tetris,” MIT researchers develop a better radiation detector