Other
“The time-honored Edisonian trial-and-error process of discovery is slow and labor-intensive. This hampers the development of urgently needed new technologies for clean energy and environmental sustainability, as well as for electronics and biomedical devices. “It usually takes 10 to 20 …
News Engineers use quantum computing to develop transparent window coating that blocks heat, saves energy
“Cooling accounts for about 15 percent of global energy consumption. Conventional clear windows allow the sun to heat up interior spaces, which energy-guzzling air-conditioners must then cool down. But what if a window could help cool the room, use no …
“When most people think of wearable devices, they think of smart watches, smart glasses, fitness trackers, even smart clothing. These devices, part of a fast-growing market, have two things in common: They all need an external power source, and they …
“Antennas catch radio waves, a form of electromagnetic radiation, from the air and convert the energy into electrical signals that feed modern telecommunications. They can also convert electrical signals into radio waves. Without antennas, the world would be a much …
“Superconductors contain tiny tornadoes of supercurrent, called vortex filaments, that create resistance when they move. This affects the way superconductors carry a current. But a magnet-controlled “switch” in superconductor configuration provides unprecedented flexibility in managing the location of vortex filaments …
“Researchers at the University of Notre Dame are developing a renewable energy approach for synthesizing ammonia, an essential component of fertilizers that support the world’s food production needs. The Haber-Bosch process developed in the early 1900s for producing ammonia …
“Researchers at the University of Notre Dame found that the complexity of a uranium-based mineral, dubbed ewingite, is nearly twice as high as the previous most complex mineral. The study, published in Geology, required the use of the Advanced Photon …
“At a few billionths of a meter, a nanopore is too tiny to see and too tiny to image easily. These miniscule cavities, when created in synthetic materials, are incredibly powerful. Nanopores have the capacity to detect single-molecules, study single-reaction …
“Nanomaterials have been widely studied and proven to have unique properties that make them more suited to a variety of applications. However, there is still a need to better understand their structure and property evolutions from nanoscale to macroscale as …