“If there’s such a thing as an experiment that goes too well, a recent effort in the lab of Stanford chemical engineering Professor Zhenan Bao might fit the bill. One of her team members, Cheng-Hui Li, wanted to test the stretchiness of a rubberlike type of plastic known as an elastomer that he had just synthesized. Such materials can normally be stretched two or three times their original length and spring back to original size. One common stress test involves stretching an elastomer beyond this point until it snaps. But Li, a visiting scholar from China, hit a snag: The clamping machine typically used to measure elasticity could only stretch about 45 inches. To find the breaking point of their one-inch sample, Li and another lab member had to hold opposing ends in their hands, standing further and further apart, eventually stretching a 1-inch polymer film to more than 100 inches.”
Related Content
Related Posts:
- Exploring the ultrasmall and ultrafast through advances in attosecond science
- A replacement for traditional motors could enhance next-gen robots
- New high-speed microscale 3D printing technique
- Researchers show an old law still holds for quirky quantum materials
- Groundbreaking study shows defects spreading through diamond faster than the speed of sound
- ‘Computer vision’ reveals unprecedented physical and chemical details of how a lithium-ion battery works
- Unlocking the mysteries of freezing in supercooled water droplets
- A molecular additive enhances next-gen LEDs – but shortens their lifespans
- Researchers show how to increase X-ray laser brightness and power using a crystal cavity and diamond mirrors
- New nontoxic powder uses sunlight to quickly disinfect contaminated drinking water